Tuesday, January 28, 2020
Java-Whitepaper Essay Example for Free
Java-Whitepaper Essay This white paper compares C++/Qt with Java/AWT/Swing for developing large-scale, real-world software with graphical user interfaces. References are made to independent reports that examine various aspects of the two toolsets. 1 A Comparison of Qt and Java 1. What Do We Compare? When selecting an environment for a large software development project, there are many aspects that must be considered. The programming language is one of the most significant aspects, since its choice has considerable impact on what other options are available. For example, in a GUI development project, developers will need a GUI library that provides ready-made user interface components, for example, buttons and menus. Since the selection of the GUI library itself has a large impact on the development of a project, it is not uncommon for the GUI library to be chosen first, with the programming language being determined by the languages for which the library is available. Usually, there is only one language per library. Other software components like database access libraries or communication libraries must also be taken into consideration, but they rarely have such a strong impact on the overall design as the GUI libraries. In this white paper, the objective is to compare the C++/Qt environment with the Java/AWT/Swing environment. In order to do this in the most useful way, we will begin by comparing the programming languages involved, i. e. C++ and Java, and then compare the two GUI libraries, Qt for C++ and AWT/Swing for Java. 2. Comparing C++ and Java When discussing the various benefits and drawbacks of particular programming languages, the debate often degenerates into arguments that are based on personal experience and preference rather than any objective criteria. Personal preferences and experience should be taken into account when selecting a programming language for a project, but because it is subjective, it cannot be considered here. Instead we will look at issues such as programmer-efficiency, runtime-efficiency and memory-efficiency since these can be quantified and have been examined in scientifically conducted research, although we will also incorporate information based on the practical exerience of projects that have been implemented in our own company. 2. 1. Programmer-efficiency Programmer-efficiency describes how efficiently (i. e. how quickly and accurately) a programmer with a given degree of experience and knowledge can implement a certain set of requirements in a particular programming language, including debugging and project setup time. Since developer salaries are one of the primary cost factors for any programming project, programmer-efficiency greatly affects the 2 A Comparison of Qt and Java cost-efficiency of the project. To some extent, programmer-efficiency is also determined by the tools available. The main design goal of Java is increased programmer-efficiency compared to other general-purpose programming languages, rather than increased memory- or runtime-efficiency. Java has several features designed to make it more programmer-efficient. For example, unlike C++ (or C), the programmer does not have to explicitly free (give back) allocated memory resources to the operating system. Freeing unused memory (garbage collection) is handled automatically by the Java runtime system, at the expense of memory- and runtime-efficiency (see below). This liberates the programmer from the burden of keeping track of allocated memory, a tedious task that is a major cause of bugs. This feature alone should significantly increase the programmer-efficiency of Java programmers, compared to C++ (or C) programmers. Research shows that in practice, garbage collection and other Java features, do not have a major influence on the programmer-efficiency. One of the classic software estimation models, Barry Boehmââ¬â¢s CoCoMo1 predicts the cost and schedule of a software project using cost drivers which take into account variables like the general experience of a programmers, the experience with the programming language in question, the targeted reliability of the program, etc. Boehm writes that the amount of effort per source statement was highly independent of the language level. Other research, for example, A method of programming measurement and estimation by C. E. Walston and C. P. Felix of IBM2, points in the same direction. Both the reports cited here pre-date the advent of Java by many years, although they seem to reveal a general principle that the sophistication of a general-purpose programming language has, compared with other aspects, like the experience of the developers, no significant influence on the overall project costs. There is more recent research that explicitly includes Java and which supports this hypothesis. In An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl3, Lutz Prechelt of the University of Karlsruhe, describes an experiment he conducted in which computer science students were assigned a particular design and development task and asked to implement the specification provided in any of the languages C, C++, or Java which they could freely choose according to their personal preferences (the other languages were examined in a different part of the research project). The data gathered shows almost the same results for C++ and Java (with C running third in most aspects). This is also backed up by our own experience: if programmers can choose their favorite programming language (which is usually the one they have most experience of), programmers with the same level of experience (measured for example, in years of programming experience in general) achieve about the same programmer-efficiency. Another interesting aspect that we noted (but which is not yet supported by any formal 3 A Comparison of Qt and Java research) is that less experienced developers seem to achieve somewhat better results with Java, medium-experienced developers achieve about the same results with both programming languages, nd experienced developers achieve better results with C++. These findings could be due to better tools being available for C++; nevertheless this is an aspect that must be taken into account. An interesting way to quantify programmer-efficiency is the Function Point method developed by Capers Jones. Function points are a software metric that only depend on the functionality, not on the implementation. Working from the function points, it is possible to compute the lines of code needed per function point as well as the language level which describes how many function points can be implemented in a certain amount of time. Intriguingly, both the values for the lines of code per function point and the language level are identical for C++ and Java (6 for the language level, compared with Cââ¬â¢s 3. 5 and Tclââ¬â¢s 5, and 53 for the lines of code per function point, compared with Cââ¬â¢s 91 and Tclââ¬â¢s 64). In conclusion: both research and practice contradict the claim that Java programmers achieve a higher programmer-efficiency than C++ programmers. 2. 2. Runtime-efficiency We have seen that Javaââ¬â¢s programmer-efficiency appears to be illusory. We will now examine its runtime efficiency. Again, Prechelt provides useful data. The amount of data he provides is huge, but he arrives at the conclusion that a Java program must be expected to run at least 1. 22 times as long as a C/C++ program. Note that he says at least; the average runtime of Java programs is even longer. Our own experience shows that Java programs tend to run about 2-3 times as long than their equivalent C/C++ programs for the same task. Not surprisingly, Java loses even more ground when the tasks are CPU-bound. When it comes to programs with a graphical user interface, the increased latency of Java programs is worse than the runtime performance hit. Usability studies show that users do not care about whether a long running task takes, say, two or three minutes, but they do care when a program does not show an immediate reaction to their interaction, for example when they press a button. These studies show that the limit of what a user accepts before they consider a program to be unresponsive can be as little as 0. 7 seconds. Well return to this issue when we compare graphical user interfaces in Java and C++ programs. An explanation about why Java programs are slower than C++ is in order. C++ programs are compiled by the C++ compiler into a binary format that can be executed directly by the CPU; the whole program execution thus takes place in 4 A Comparison of Qt and Java hardware. (This is an oversimplification since most modern CPUs execute microcode, but this does not affect the issues discussed here. ) On the other hand, the Java compiler compiles the source code into bytecode which is not executed directly by the CPU, but rather by another piece of software, the Java Virtual Machine (JVM). The JVM in turn, runs on the CPU. The execution of the bytecode of a Java program does not take place in (fast) hardware, but instead in (much slower) software emulation. Work has been undertaken to develop Just in Time (JIT) compilers to address Javaââ¬â¢s runtime efficiency problem, but no universal solution has yet emerged. It is the semi-interpreted nature of Java programs that makes the compile once, run anywhere approach of Java possible in the first place. Once a Java program is compiled into bytecode, it can be executed on any platform which has a JVM. In practice, this is not always the case, because of implementation differences in different JVMs, and because of the necessity to sometimes use native, non-Java code, usually written in C or C++, together with Java programs. But is the use of platform-independent bytecode the right approach for crossplatform applications? With a good cross-platform toolkit like Qt and good compilers on the various platforms, programmers can achieve almost the same by compiling their source code once for each platform: write once, compile everywhere. It can be argued that for this to work, developers need access to all the platforms they want to support, while with Java, in theory at least, developers only need access to one platform running the Java development tools and a JVM. In practice, no responsible software manufacturer will ever certify their software for a platform the software hasnt been tested on, so they would still need access to all the relevant platforms. The question arises why it should be necessary to run the Java Virtual Machine in software; if a program can be implemented in software, it should also be possible to have hardware implement the same unctionality. This is what the Java designers had in mind when they developed the language; they assumed that the performance penalty would disappear as soon as Java CPUs that implement the JVM in hardware would become available. But after five years, such Java CPUs have not become generally available. Java automatically de-allocates (frees) unused memory. The programmer allocates memory, and the JVM keeps track of all the allocated memory blocks and the references to them. As soon as a memory block is no longer referenced, it can be reclaimed. This is done in a process called garbage collection in which the JVM periodically checks all the allocated memory blocks, and removes any which are no longer referred to. Garbage collection is very convenient, but the trade offs are greater memory consumption and slower runtime speed.. With C++, the programmer can (and should) delete blocks of memory as soon as they are no longer required. With Java, blocks are not deleted until the next garbage collection run, and this depends on the implementation on the JVM being used. Prechtelt provides figures which state that on average ( ) and with a confidence of 80%, the Java programs consume at least 32 MB (or 297%) more memory than the C/C++ programs ( ). In addition to the higher memory requirements, the garbage collection process itself requires processing power which is consequently not available to the actual application functionality, leading to slower overall runtimes. Since the garbage collector runs periodically, it can occasionally lead to Java programs freezing for a few seconds. The best JVM implementations keep the occurrence of such freezes to a minimum, but the freezes have not been eliminated entirely. When dealing with external programs and devices, for example, during I/O or when interacting with a database, it is usually desirable to close the file or database connection as soon as it is no longer required. Using C++ââ¬â¢s destructors, this happens as soon as the programmer calls delete. In Java, closing may not occur until the next garbage collecting sweep, which at best may tie up resources unnecessarily, and at worst risks the open resources ending up in an inconsistent state. The fact that Java programs keep memory blocks around longer than is strictly necessary is especially problematic for embedded devices where memory is often at a premium. It is no coincidence that there is (at the time of writing) no complete implementation of the Java platform for embedded devices, only partial implementations that implement a subset. The main reason why garbage collection is more expensive than explicit memory management by the programmer is that with the Java scheme, information is lost. In a C++ program, the programmer knows both where their memory blocks are (by storing pointers to them) and knows when they are not needed any longer. In a Java 6 A Comparison of Qt and Java program, the latter information is not available to the JVM (even though it is known to the programmer), and thus the JVM has to manually find unreferenced blocks. A Java programmer can make use of their knowledge of when a memory block is not needed any longer by deleting all references that are still around and triggering garbage collection manually, but this requires as much effort on the part of the programmer as with the explicit memory management in C++, and still the JVM has to look at each block during garbage collection to determine which ones are no longer used. Technically, there is nothing that prevents the implementation and use of garbage collection in C++ programs, and there are commercial programs and libraries available that offer this. But because of the disadvantages mentioned above, few C++ programmers make use of this. The Qt toolkit takes a more efficient approach to easing the memory management task for its programmers: when an object is deleted, all dependant objects are automatically deleted too. Qtââ¬â¢s approach does not interfere with the programmerââ¬â¢s freedom to delete manually when they wish to. Because manual memory management burdens programmers, C and C++ have been accused of being prone to generate unstable, bug-ridden software. Although the danger of producing memory corruption (which typically leads to program crashes) is certainly higher with C and C++, good education, tools and experience can greatly reduce the risks. Memory management can be learned like anything else, and there are a large number of tools available, both commercial and open source, that help programmers ensure that there are no memory errors in the program; for example, Insure++ by Parasoft, Purify by Rational and the open source Electric Fence. C++s flexible memory management system also makes it possible to write custom memory profilers that are adapted to whichever type of application a programmer writes. To sum up this discussion, we have found C++ to provide much better runtime- and memory-efficiency than Java, while having comparable programmer-efficiency. 2. 4. Available libraries and tools The Java platform includes an impressive number of packages that provide hundreds of classes for all kinds of purposes, including graphical user interfaces, security, networking and other tasks. This is certainly an advantage of the Java platform. For each package available on the Java platform, there is at least one corresponding library for C++, although it can be difficult to assemble the various libraries that would be needed for a C++ project and make them all work together correctly. However, this strength of Java is also one of its weaknesses. It becomes increasingly difficult for the individual programmer to find their way through the huge APIs. For any given task, you can be almost certain that somewhere, there is 7 A Comparison of Qt and Java functionality that would accomplish the task or at least help with its implementation. But it can be very difficult to find the right package and the right class. Also, with an increasing number of packages, the size of the Java platform has increased considerably. This has led to subsets e. g. , for embedded systems, but with a subset, the advantage of having everything readily available disappears. As an aside, the size of the Java platform makes it almost impossible for smaller manufacturers to ship a Java system independent from Sun Microsystems, Javaââ¬â¢s inventor, and this reduces competition. If Java has an advantage on the side of available libraries, C++ clearly has an advantage when it comes to available tools. Because of the considerable maturity of the C and C++ family of languages, many tools for all aspects of application development have been developed, including: design, debugging, and profiling tools. While there are Java tools appearing all the time, they seldom measure up to their C++ counterparts. This is often even the case with tools with the same functionality coming from the same manufacturer; compare, for example, Rationalââ¬â¢s Quantify, a profiler for Java and for C/C++. The most important tool any developer of a compiled language uses, is still the compiler. C++ has the advantage of having compilers that are clearly superior in execution speed. In order to be able to ship their compilers (and other tools) on various platforms, vendors tend to implement their Java tools in Java itself, with all the aforementioned memory and efficiency problems. There are a few Java compilers written in a native language like C (for example, IBMââ¬â¢s Jikes), but these are the exception, and seldom used. 3. Comparing AWT/Swing and Qt So far, we have compared the programming language Java and the programming language C++. But as we discussed at the beginning of this article, the programming language is only one of the aspects to consider in GUI development. We will now compare the packages for GUI development that are shipped with Java, i. e. AWT and Swing, with the cross-platform GUI toolkit, Qt, from the Norwegian supplier, Trolltech. We have confined the comparision on the C++ side to the Qt GUI toolkit, since unlike MFC (Microsoft Foundation Classes) and similar toolkits, This seems to contradict Javaââ¬â¢s cross-platform philosophy and may be due to the the initial AWT version being reputedly developed in under fourteen days. Because of these and a number of other problems with the AWT, it has since been augmented by the Swing toolkit. Swing relies on the AWT (and consequently on the native libraries) only for very basic things like creating rectangular windows, handling events and executing primitive drawing operations. Everything else is handled within Swing, including all the drawing of the GUI components. This does away with the problem of applications looking and behaving differently on different platforms. Unfortunately, because Swing is mostly implemented in Java itself, it lacks efficiency. As a result, Swing programs are not only slow when performing computations, but also when drawing and handling the user interface, leading to poor responsiveness. As mentioned earlier, poor responsiveness is one of the things that users are least willing to tolerate in a GUI application. On todayââ¬â¢s standard commodity hardware, it is not unusual to be able to watch how a Swing button is redrawn when the mouse is pressed over it. While this situation will surely improve with faster hardware, this does not address the fundamental problem that complex user interfaces developed with Swing are inherently slow. The Qt toolkit follows a similar approach; like Swing, it only relies on the native libraries only for very basic things and handles the drawing of GUI components itself. This brings Qt the same advantages as Swing (for example, applications look and behave the same on different platforms), but since Qt is entirely implemented in C++ and thus compiled to native code; it does not have Swingââ¬â¢s efficiency problems. User interfaces written with Qt are typically very fast; because of Qts smart use of caching techniques, they are sometimes even faster than comparable programs written using only the native libraries. Theoretically, an optimal native program should always be at least as fast as an equivalent optimal Qt program; however, making a native program optimal is much more difficult and requires more programming skills than making a Qt program optimal. Both Qt and Swing employ a styling technique that lets programs display in any one of a number of styles, independent of the platform they are running on. This is possible because both Qt and Swing handle the drawing themselves and can draw GUI elements in whichever style is desired. Qt even ships with a style that emulates the default look-and-feel in Swing programs, along with styles that emulate the 9 A Comparison of Qt and Java Win32 look-and-feel, the Motif look-and-feel, andââ¬âin the Macintosh versionââ¬â the MacOS X Aqua style. 3. 2. Programming Paradigms In Qt and Swing While programming APIs to some extent are a matter of the programmers personal taste, there are some APIs that lend themselves to simple, short, and elegant application code far more readily than others.
Monday, January 20, 2020
South African Development Plan Essay -- Urban Development
South Africa is a country in the continent of Africa, located to the south tip as its name suggests. Colonized by the Dutch in 1994, South Africa is seperated into nine provinces and is bordered to the north by the countries: Namibia, Botswana, and Zimbabwe, to the east: Swaziland and Mozambique, while coined in the south east is the country Lesotho, completely surrounded by the territory of South Africa. South Africa is one of the most diverse places in the world, and has eleven nationally recognized languages, whereas most countries only have one (Rosmarin & Rissik, 2003). The black indigenous population makes up a majority of the country while also harboring other ethnic cultures such as: whites, Greeks, Germans, Italians, and Asians (Rosmarin & Rissik, 2003). South Africa has a mixed economy based on its agriculturally fertile lands, mineral resources and tourist attractions. Though there is political and economic stability, the country is still faced with drawbacks such as unemp loyment, poverty, and the AIDS pandemic (OECD, 2008). A development plan is vital for the economic development and growth of South Africa. In an attempt to create jobs and build a unified South Africa, the government should draw up informed policies, budgets, and influential programs to ensure that no citizen is excluded and thus benefit everybody in the country. Indeed, South Africa has the relevant economic and social resources imperative for the realization of all the demands of industrialization (Bond, 2002). Though seemingly prosperous, the social evils hidden in the country are normally impediments to the growth and success of the nation. Without doubt, much of the success of the country is basically a function of the unknown resources in the c... ...ing in South Africa. Such a plan will be instrumental for fostering unity in the region and may increase participation with other countries. Works Cited Rosmarin, I., & Rissik, D. (2003, January). South africa: Cultures of the world. (2 ed.). New York: Benchmark Books. Organisation for Economic Co-operation and Development. (2008, July). Economic assessment of south africa. Retrieved from http://www.oecd.org/dataoecd/58/32/40959551.pdf Bond, P. (2002, August). Unsustainable south africa: Environment development and social protest. London: University of KwaZulu-Natal. African National Congress. (1994). The reconstruction and development programme. Johannesburg: Umanyano Publications. Abbi, A. (2005, June). Culture, education, and development in south africa: Historical and contemporary perspectives. Westport, CT: Greenwood Publishing Group, Inc.
Sunday, January 12, 2020
Management accounting questions
Decision makers are variably constrained by the environmental factors, their education, and mental ability. Besides these, decision makers may be constrained by the deficiencies in the information that Is available to them. Required Elaborate this statement with reference to Information deficiency with regard to Information timeliness, Information accuracy and clarity, Information relevance, and Information aggregation levels.Cite examples to support your points Jam Ltd is a manufacturer of a fertilizer product which is packed in 50 keg bags. The following report for year ended 31st December 2013 based on account analysis classification is availed to you Manufacturing costs Account Nature or Classification Amount in This 000 Direct Materials All variable 360,000 Direct Labor 200,000 Overhead costs: Electricity and water 60% variable 60,000 Managerial salaries 20% variable 1 o,oho Maintenance costs variable Depreciation 0% variable Indirect labor 50% variable 120,000Non manufacturing costs Accounts Administration expenses Marketing expenses 40% variable Depreciation costs 80,000 During the year 2013, Jam Ltd produced 80,000 bags. Management is forecasting sales price for the year 2014 based on 2013 cost data. The following additional data is available for the year 2014 compared to the data for the year 2013 1 . Price for direct materials are expected to increase by 10% 2. Under the terms of labor contract, both direct and indirect labor rates are expected to increase by 0% 3. All depreciation costs are expected to increase by 10% 4.Administration and marketing expenses to increase by 20% 5. Electricity and water, maintenance costs and managerial salaries are not expected to change 6. Jam Ltd expects to produce and sell 96,000 bags of fertilizer in the year 2014 Required (I) Estimates price per kilo of fertilizer in the year 2014 if gross profit margin of 201% is targeted (it) Outline advantages and limitations of cost based pricing technique ) For the year 2014 the following projected company data is made available to you for planning purpose 1.Estimated manufacturing costs when production level is 190,000 units is: fixed costs This 180,500,000 and per unit variable costs This 2,800. This cost behavior is maintained at all levels 2. The annual fixed advertising costs of This 190,000,000 and per unit uniform marketing costs of This 800 at all levels 3. A market survey carried out shows that for a change in privet
Saturday, January 4, 2020
The Anchoring Theory Of Lightness Perception - 1950 Words
Word count: 1613 An analytical discussion on the Anchoring Theory of Lightness Perception Gilchrist et al. (1999) Isabel Villafuerte 695563 Melbourne University Abstract The ability to perceive lightness is a key component in completing everyday tasks. However, due to the variations in illumination and context, lightness perception theories fail to fully explain lightness perception for all situations. The anchoring theory of lightness perception (Gilchrist et al., 1999) successfully provides a theory that explains the accurate yet systematic inaccuracies of human lightness perception under vast conditions (Murray,2013). These conditions are governed by frameworks, which are groupings of surfaces that belong to each other more or less as determined by 5 factors; Depth, Orientation, Penumbrae, Junctions and Grouping (Gilchrist et al, 1999). However, as anchoring occurs independently within each framework, other theories have been founded which suggest that the human visual system uses the Gestalt laws of perceptual grouping to group regions into factions, known as frameworks, where all regions in the single framework are expected to be illuminated un iformly (Bressan, 2006). (Words 154) From deciding whether to clean the car to recognising a particular brand, lightness is a key aspect in everyday life. Yet, the process of how humans perceive lightness cannot be understood solely by one theory of lightness perception. Currently, The Anchoring Theory ofShow MoreRelatedStrategy Safari by Mintzberg71628 Words à |à 287 Pagessocieties (such as revolution) can help explain different stages in the development of organizational strategies (for example, turnaround as a form of cultural revolution). Physicists descriptions of quantum mechanics and mathematicians theories of chaos may provide insights into how organizations change. And so on. Add to this all the other literatures that are more commonly recognized as relevant to the study of organizationsââ¬âpsychology on human cognition as well as leadership charisma
Subscribe to:
Posts (Atom)